Machine Learning Approach For Prediction Of Knee Osteoarthritis Progression Using Demographic And Clinical Variables

¹Wisely Koay Zhi-Tang; ¹Shishkina, Margarita; ¹Tan Sik-Loo; ²Wong Pooi-Fong; ^{3,4}Chang Siow-Wee; ¹Teo Seow-Hui; ¹Abbas Azlina Amir; ⁵Roebuck Margaret M.; ^{1, 6}Kamarul Tunku

¹NOCERAL, Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya (UM), Lembah Pantai, Kuala Lumpur, Malaysia, ²Department of Pharmacology, Faculty of Medicine, UM, Lembah Pantai, Kuala Lumpur, Malaysia, ³Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, UM, Kuala Lumpur, Malaysia, ⁴Centre of

Research in System Biology, Structural, Bioinformatics and Human Digital Imaging (CRYSTAL), UM, Kuala Lumpur,

Malaysia, ⁵Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, ⁶Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang.

INTRODUCTION:

Knee osteoarthritis (KOA), characterized by progressive cartilage deterioration, poses a significant burden on global healthcare systems due to its high prevalence. Despite advancements in treatment modalities, accurately predicting the trajectory of OA progression remains a challenge and early identification of individuals at risk of rapid OA progression is crucial for implementing timely interventions to mitigate disease severity¹. This study presents a machine learning (ML) approach to predict Kellgren-Lawrence (KL) graded KOA progression at 48 months based on baseline demographic and clinical data.

METHODS:

The dataset utilized in this study comprises demographic factors along with clinical variables obtained from the Osteoarthritis Initiative (OAI) database. The data were preprocessed and encoded before using them as input for the learning of machine learning algorithms. A variety of advanced classifiers such as Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbors (KNN), Support Vector Machine (SVM) and Naïve Bayes (NB) were trained and evaluated for their performance.

RESULTS:

The classification with the RF algorithm emerged as the top-performing model. Our results demonstrate the efficacy of the proposed approach, with the RF classifier achieving an average area under the receiver operating characteristic curve (AUC) of 0.78 and an average accuracy of 0.71.

Table	1	shows	the	performance	metrics	of	
different ML classifiers.							

ML	Average AUC	Average
model		accuracy
RF	0.78 (0.77 - 0.80)	0.71 (0.70 - 0.72)
LR	0.64 (0.62 - 0.65)	0.59 (0.58 - 0.60)
KNN	0.62 (0.61 - 0.64)	0.59 (0.58 - 0.61)
SVM	0.66 (0.64 - 0.67)	0.61 (0.59 - 0.62)
NB	0.61 (0.60 - 0.63)	0.58 (0.56 - 0.59)

DISCUSSIONS:

The superior RF classifier's performance emphasizes techniques' ensemble learning importance in handling complex, highdimensional datasets, i.e. nonlinear relationships among variables in KOA progression modeling. In this study, this RF modelling is better than the GBM and LR models reported by Tiulpin et al^2 .

CONCLUSION:

The RF classifier is the best model for KL grade progression prediction based on demographic and clinical data at 48 months. The findings of this study contribute to the advancement of prognostic modeling in knee OA. Continuous refinement and validation of the predictive model are required to further enhance its accuracy and applicability in clinical settings.

REFERENCES:

1. Machine learning in knee osteoarthritis: A review. Osteoarthritis and Cartilage Open, 2(3), 100069.

2. Tiulpin et al. (2019). Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data. Scientific Reports, 9(1), 20038.