MOJ Header

Current Issue - July 2019, Volume 13, Issue No. 2

Official Journal of Malaysian Orthopaedic Association and ASEAN Orthopaedic Association

Fracture Non-Union: A Review of Clinical Challenges and Future Research Needs

References

  1. Crenshaw H. Delayed Union and Non-Union of Fractures. In: Crenshaw A, editor. Campbell’s Operative Orthopaedics, Vol 3. CV Mosby; 1987. P. 118.
  2. Food and Drug Administration. Guidance Document for Industry and CDRH Staff for the Preparation of Investigational Device Exemptions and Premarket Approval Applications for Bone Growth Stimulator Devices; Draft; Availability. United Stated: Office of the Federal Register, National Archives and Records Administration; 1998. 23292-3p. 63 FR 23292.
  3. Matin P. Bone Scintigraphy in The Diagnosis and Management of Traumatic Injury. Semin Nucl Med. 1983; 13(2): 104-22.
  4. Malik ZU, Mahmood K, Ahmed NT, Khan A, Tariq S, Hussain S. Analysis of Causes and Treatment Modality in Non-Union of Long Bones Diaphyseal Fractures. Pakistani Armed Forces Med. J. 2011: 61(3): 433-7.
  5. Frölke JPM, Patka P. Definition and Classification of Fracture Non-Unions. Injury. 2007; 38: S19-22.
  6. Bumbaširevič M, Tomić S, Lešić A, Milošević I, Atkinson HDE. War-related Infected Tibial Nonunion with Bone and Soft-Tissue Loss Treated with Bone Transport using the Ilizarov Method. Arch Orthop Trauma Surg. 2019; 130(6): 739-49.
  7. Den Boer FC, Patka P, Bakker FC, Haarman HJTM. Current Concepts of Fractures Healing, Delayed Unions, and Nonunions. Osteo trauma care. 2002; 10(01): 1-7.
  8. Bhandari M, Guyatt G, Swiontkowski M, Tornetta P, Sprague S, Schemitsch E. A Lack of Consensus in the Assesment of Fracture Healing Among Orthopaedic Surgeons. J Orthop Trauma. 2002; 16(8): 562-6.
  9. Scolaro JA, Schenker ML, Yannascoli S, Baldwin K, Metha S, Ahn J. Cigarette Smoking Increase Complications Following Fracture: A Systematic Review. J Bone Joint Surg Am. 2014; 98(8): 674-81.
  10. Pearson RG, Clement RG, Edward KL, Scammell BE. Do smokers have greater risk of delayed and non-union after fractures, osyeotomy and arthrodesis? A systematic review with meta-analysis. BMJ Open. 2016; 6(11): e010303.
  11. Zura R, Mehta S, Della Rocca GJ, Steen RG. Biological Risk Factors for Nonunion of Bone Fracture. JBJF Rev. 2016; 4(1).
  12. Brownlow HC, Reed A, Simpson AHRW. The vascularity of atrophic non-unions. Injury. 2002; 33(2): 145-50.
  13. Robinson CM, McQueen MM, Wakefield AE. Estimating the risk of nonunion following nonoperative treatment of a clavicular fracture. J Bone Joint Surg Am. 2004; 86(7): 1359-65.
  14. Mills LA, Aitken SA, Simpson AHRW. The risk of non-union per freacture: Current myths and revised figures from a population of over 4 million adults. Acta Orthop. 2017; 88(4): 434-9.
  15. Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, et al. Epidemiology of Fracture Nonunion in 18 Human Bones. JAMA Surg. 2016; 151(11): e162775.
  16. Megas P. Classification of non-union. Injury. 2005; 36 Suppl 4: S30-7.
  17. Tzioupis C, Giannoudis P V. Prevalence of long-bone non-union. Injury. 2007; 38 Suppl 2: S3-9.
  18. Clifford RP, Lyons TJ, Webb JK. Complications of external fixation of open fractures of the tibia. Injury. 1987; 18(3): 174-6.
  19. Giannoudis P V, Papakostidis C. A review of the management of open fractures of the tibia and femur. J Bone Joint Surg Br. 2006; 88(3): 281-9.
  20. Patil S, Montgomery R. Management of complex tibial and femoral nonunion using the Ilizarov technique, and its cost implications. J Bone Joint Surg Br. 2006; 88-B: 928-32.
  21. Dahabreh Z, Dimitriou R, Giannoudia PV. Health economics: A analysis of treatment of persistent fracture non-using bone morphogenetic protein-7. Injury. 2007; 38(3): 371-7.
  22. Kanakaris NK, Giannoudis PV. The health economics of the treatment of long-bone non-unions. Injury. 2007; 38: S77-84.
  23. Dahabreh Z, Calori GM, Kanakaris NK, Nikolaou VS, Giannoudis PV. A cost analysis of treatment of tibial fracture nonunion by bone grafting or bone morphogenetic protein-7. Int Orthop. 2009; 33(5): 1407-14.
  24. Donaldson LJ, Reckless IP, Scholes S, Mindell JS, Shelton NJ. The epidemiology of fractures in England. J Epidemiol Community Health. 2008; 62(2): 174-80.
  25. Brinker MR, Trivedi A, O’Connor DP. Debilitating Effects of Femoral Nonunion on Health-Related Quality of Life. J Orthop Trauma. 2017; 31(2): e37-e42.
  26. Crawford RR. A history of the treatment of non-union of fractures in the 19th century, in the United States. J Bone Joint Surg Am. 1973; 55(8): 1685-97.
  27. Simonis RB. An Historical Background to the Treatment of Non-Union. In: De Bastiani G, Apley AG, Goldberg A. Orthofi x External Fixation in Trauma and Orthopaedics. London: Springer London; 2000. P. 511-21. Available from: https://doi.org/10.1007/978-1-4471-0691-3_48
  28. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Rest. 1996; 329: 300-9.
  29. Giannoudis P V, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007; 38: S3-6.
  30. Hoey DA, Tormey S, Ramcharan S, O’Brien FJ, Jacobs CR. Primary Cilia-Mediated Mechanotransduction in Human Mesenchymal Stem Cell. Stem Cell. 2012; 30(11): 2561-70.
  31. Pemberton GD, Childs P, Reid S, Nikukar H, Tsimbouri PM, Gadegaard N, et al. Nanoscale stimulations of osteoblastogenesis from mesenchymal stem cell: nanotopography and nanokicking. Nanomedicine (Lond). 2015; 10(4): 547-60.
  32. Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, et al. Cartilage repair using bone morphogenetic protein 4 and musclederived stem cells. Arthritis Rheum. 2006; 54(2): 433-42.
  33. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol. 1994; 127(6): 1755-66.
  34. Zelle BA, Gollwitzer H, Zlowodzki M, Buhren V. Extracorporeal Shock Wave Therapy: Current Evidence. J Orthop Trauma. 2010; 24 Suppl 1: S66-70.
  35. Zura R, Della Rocca GF, Mehta S, Harrison A, Brodie C, Jones J, et al. Treatment of chronic (> 1 year) fracture nonunion: heal rate in a cohort of 767 patients treated with low-intensity pulsed ultrasound (LIPUS). Injury. 2015; 46(10): 2036-41.
  36. Schofer MD, Block JE, Aignet J, Schmelz A. Improved healing response in delayed unions of the tibia with low-intensity pulsed ultrasound: Results of a randomized sham-controlled trial. BMC Musculoskelet Disord. 2010; 11: 229.
  37. Jingushi S, mizuno K, Matsushita T, Itoman M. Low-intensity pulsed ultrasound treatment for postoperative delayed union or nonunion of long bone fractures. J Orthop Sci. 2007; 12(1): 35.
  38. Urist MR. Bone: formation by autoinduction. Science.1965; 150(3698): 893-9.
  39. Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, et al. Recombinant Human Bone Morphogenetic Protein-2 for Treatment of Open Tibial Fractures: A Prospective, Controlled, Randomized Study of Four Hundred and Fifty Patients. J Bone Joint Surg Am. 2002; 84(12): 2123-34.
  40. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the Treatment of Tibial Nonunions: A Prospective, Randomized Clinical Trial Comparing Rhop-1 With Fresh Bone Autograft. J Bone Joint Surg Am. 2001; 83-A Suppl 1(Pt 2): S151-8.
  41. James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo). 2013. doi: 10.1155/2013/684736
  42. Calori GM, Tagliabue L, Gala L, d’Imporzano M, Peretti G, Albisetti W. Application of rhBMP-7 and platelet-rich plasma in the treatment of long bone non-unions: a prospective randomized clinical study on 120 patients. Injury. 2008; 39(12): 1391-402.
  43. Keskin DS, Tezcaner A, Korkuskuz F, Hasirci V. Collagen-chondroitin sulfate-based PLLA-SAIB-coated rhBMP-2 delivery system for bone repair. Biomaterials. 2005; 26(18): 4023-34.
  44. Robinson Y, Heyde CE, Tschoke SK, Mont MA, Seyler TM, Ulrich SD. Evidence supporting the use of bone morphogenetic proteins for spinal fusion surgery. Experts Rev Med Devices. 2008; 5(1): 75-84.
  45. Krishnakumar GS, Roffi A, Reale D, Kon E, Filardo G. Clinical application of bone morphogenetic protein for bone healing: a systematic review. Int Orthop. 2017; 41(6): 1073-83.
  46. Emara KM, Diab RA, Emara AK. Recent biological trends in management of tracture non-union. World J Orthop. 2015; 6(8): 623.
  47. Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, et al. Recombinant human BMP-2, and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects: a randomized, controlled trial. J Bone Joint Surg Am. 2006; 88(7): 1431-41.
  48. Decambron A, Fournet A, Bensidhoum M, Manassero M, Sailhan F, Petite H, et al. Low-dose BMP-2 and MSC dual delivery onto coral scaffold for critical-size bone defect regeneration in sheep. J Orthop Res. 2017; 35(12): 2637-45.
  49. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 1998; 80(7): 985-96.
  50. Calori GM, Mazza E, Colombo M, Ripamonti C, Tagliabue L. Treatment of long bone non-union with polytherapy: indications and clinical results. Injury. 2011; 42(6): 587-90.
  51. Giannoudis PV, Kankaris NK, Dimitriou R, Gill I, Kolimarala V, Montgomery RJ. The synergistic effect of autograft and BMP- 7 in the treatment of atrophic nonunions. Clin Orthop Relat Res. 2009; 467(12): 3239-48.
  52. Kankaris NK, Lasnianos N, Calori GM, Verdonk R, Blokhuis TJ, Cherubino P, et al. Application of bone morphogenetic proteins to femoral non-union: a 4-year multicenter experience. Injury. 2009; 40: S54-61.
  53. Zimmermann G, Wagner C, Schmeckenbecher K, Wentzensen A, Moghaddam A. Treatment of tibial shaft non-union: bone morphogenetic proteins versus autologous bone graft. Injury. 2009; 40: S50-3.
  54. Thomson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene. 2012; 503(2): 179-93.
  55. Robertson SN, Campsie P, Childs PG, Madsen F, Donnelly H, Henriquez L, et al. Control of cell behaviour through nonvibrational stimulation: nanokicking. Philos Trans A Math Phys Eng Sci. 2018; 28: 276(2120).
  56. Rocca A, Marino A, Rocca V, Moscato S, de Vito G, Piazza V, et al. Barium titanate nonparticles and hypergravity stimulation improve differentiation of mesenchymal stem cell into osteoblasts. Int J Nanomedicine. 2015; 10: 433-45.
  57. Stavenschi E, Labour MN, Hoey DA. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration. J Biomech. 2017; 55: 99-106.
  58. Elashry MI, Gegnaw ST, Klymiuk MC, Wenish S, Arnhold S. Influence of mechanical fluid shear stress on the osyeogenic differentiation protocols for Equine adipose tissue-derived mesenchymal stem cells. Acta Histochem. 2019; 121(3): 344-53.
  59. Ferroni L, Gardin C, Dolkart O, Salai M, Barak S, Piattelli A, et al. Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-alpha mediated inflammatory condirions: an in-vitro study. Sci Rep. 2018; 8(1): 5108.
  60. Ongaro A, Pellati A, Bagheri L, Fortini C, Setti S, De Matteion M. Pulsed electromagnetic fields stimulate osteohenetic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Biolectromagnetics. 2014; 35(6): 426-36.
  61. Enhert S, van Griensven M, Unger M, Scheffler H, Falldorf K, Fentz A-K, et al. Co-Culture with Human Osteoblasts an Exposure to Extemely Low Frequency Pulsed Electromagnetic Fields Improve Osteogenic Differentation of Human Adipose-Derived Mensenchymal Stem Cells. Int J Mol Sci. 2018; 19(4): pii:994.
  62. Simpson A, Mills L, Noble B. The role of growth factors and related agents in accelerating fracture healing. J Bone Joint Surg Br. 2006; 88(6): 701-5.
  63. Veillette CJH, McKee MD. Growth factor-BMPs, DBMs, and buffy coat products: are there any proven differences amongst them?. Injury. 2007; 38 Suppl 1: S38-48.
  64. Gianakos A, Zambrana L, Savage-Elliott I, Lane JM, Kennedy JG. Platelet-rich plasma in the animal long-bone: an analysis of basic science evidence. Orthopaedics. 2015; 38(12): e1079-90.
  65. Roffi A, Di Matteo B, Krishnakumar GS, Kon E, Filardo G. Platelet-rich plasma for the treatment of bone defects: from preclinical rational to evidence in the clinical practice. A systematic review. In Orthop. 2017; 41(2): 221-37.
  66. Griffin XL, Smith CM, Costa ML. The clinical use of platelet-rich plasma in the promotion of bone healing: A systematic review. Injury. 2009; 40(2): 158-62.
  67. Chahla J, Cinque ME, Piuzzi NS, Mannava S, Geeslin AG, Murray IR, et al. A call for standardization in platelet-rich plasma preparation protocols and composition reporting: a systematic review of the clinical orthopaedic literature. J Bone Joint Surg Am. 2017; 99(20): 1769-79.
  68. Alidadi S, Oryan A, Bigham-Sadegh A, Moshiri A. Comparative study on the healing potential of chitosan, polymethylmethacrylate, and demineralized bone matrix in radial bone defects of rat. Carbohydar Polym. 2017; 166: 236-48.
  69. Park YG, Lee YM, Park SN, Sheen SY, Chung CC, Lee SJ. Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials. 2000; 21(2): 153-9.
  70. Mathews S, Gupta PK, Bhonde R, Totey S. Chitosan enhance mineralization during osteoblast differentiation of human bone marrow-derived mesenchymal stem cell, by upregulating the associated genes. Cell Prolif. 2011; 44(6): 537-49.
  71. Lai GJ, Shalumon KT, Chen SH, Chen JP. Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym. 2014; 111: 288-97.
  72. Costa-Pinto AR, Correlo VM, Sol PC, Bhattacharya M, Charbord P, Delorme B, et al. Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Seeded on Melt Based Chitosan Scaffolds for Bone Tissue Engineering Applications. Biomacromolecules. 2009; 10(8): 2067-73.
  73. Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 2016; 85: 467-75.
  74. Bennett PM, Stewart SK, Dretzke J, Bem D, Penn-Barwell JG. Preclinical therapies to prevent or treat fracture non-union. A Systematic review. PLoS One. 2018; 13(8): e0201077.
  75. Park SS, Kim SG, Lim SC, Ong JL. Osteogenic activity of the mixture of chitosan and particulate dentin. J Biomed Mater Res Part A. 2008; 87(3): 618-23.
  76. Cui X, Zhao D, Zhang B, Gao Y. Osteogenesis mechanism of chitosan-coated calcium sulfate pellets on the restoration of segmental bone defects. J Craniofac Surg. 2009; 20(5): 1445-50.
  77. Azevedo AS, Sa MJC, Fook MVL, Neto OIN, Sousa OB, Azevedo SS, et al. Use of chitosan and β-tricalcium phosphate, alone and in combination, for bone healing in rabbits. J Mater Sci Mater Med [Internet]. 2014; 25(2): 481-6.
  78. Ezoddini-Ardakani F, Navabazam A, Fatehi F, Danesh-Ardekani M, Khadem S, Rouhi G. Histologic evaluation of chitosan as an accelerator of bone regeneration in microdrilled rat tibias. Dent Res J (Isfahan). 2012; 9(6): 694-9.
  79. Vaca-Cornrjo F, Reyes MH, Jimenez SHD, Velazquez RAL, Jimenez JMD. Pilot Study Using a Chitosan-Hydroxyapatite Implant for Guided Alveolar Bone Growth in Patients with Chronic Periodontitis. J Funct Biomater. 2017; 19:8(3). Pii: E29.

Abstract   |   Reference

MOJ footer

About Us

The Malaysian Orthopaedic Journal is a peer-reviewed journal that is published three times a year in both print and electronic online version. The purpose of this journal is to publish original research studies, evaluation of current practices and case reports in various subspecialties of orthopaedics and traumatology, as well as associated fields like basic science, biomedical engineering, rehabilitation medicine and nursing.

Keep in Touch

creative-commons License