MOJ Header

Current Issue - July 2025, Volume 19, Issue No. 2

Official Journal of Malaysian Orthopaedic Association and ASEAN Orthopaedic Association

Radiographical Assessment of Injectable Calcium Phosphate Bone Cement (Osteopaste) in Critical Size Bone Defects of Rabbit’s Tibia Model

References

  1. Al-Sanabani JS, Madfa AA, Al-Sanabani FA. Application of calcium phosphate materials in dentistry. Int J Biomater. 2013; 2013: 876132. doi: 10.1155/2013/876132
  2. Dorozhkin SV. Calcium orthophosphates (CaPO4): occurrence and properties. Prog Biomater. 2016; 5: 9-70. doi: 10.1007/s40204-015-0045-z
  3. Xu HH, Wang P, Wang L, Bao C, Chen Q, Weir MD, et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 2017; 5: 17056. doi: 10.1038/boneres.2017.56
  4. Xu HH, Quinn JB, Takagi S, Chow LC. Processing and properties of strong and non-rigid calcium phosphate cement. J Dent Res. 2002; 81(3): 219-24.
  5. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019; 23: 4. doi: 10.1186/s40824-018-0149-3
  6. Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials (Basel). 2017; 10(4): 334. doi: 10.3390/ma10040334
  7. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, et al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006; 27(17): 3230-7. doi: 10.1016/j.biomaterials.2006.01.031
  8. Song G, Habibovic P, Bao C, Hu J, van Blitterswijk CA, Yuan H, et al. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials. 2013; 34(9): 2167-76. doi: 10.1016/j.biomaterials.2012.12.010
  9. Che Seman CNZ, Zakaria Z, Sharifudin MA, Che Ahmad A, Awang MS, Mohd Yusof MN, et al. Model of A Critical Size Defect in the New Zealand White Rabbit’s Tibia. IMJM. 2018; 17(1). doi: 10.31436/imjm.v17i1.305
  10. Candeiro GT, Correia FC, Duarte MA, Ribeiro-Siqueira DC, Gavini G. Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J Endod. 2012; 38(6): 842-5. doi: 10.1016/j.joen.2012.02.029
  11. Tanomaru-Filho M, Jorge EG, Tanomaru JM, Gonçalves M. Evaluation of the radiopacity of calcium hydroxide- and glass-ionomer-based root canal sealers. Int Endod J. 2008; 41(1): 50-3. doi: 10.1111/j.1365-2591.2007.01309.x
  12. Katz A, Kaffe I, Littner M, Tagger M, Tamse A. Densitometric measurement of radiopacity of Gutta-percha cones and root dentin. J Endod. 1990; 16(5): 211-3. doi: 10.1016/S0099-2399(06)81671-7
  13. Pekkan G, Aktas A, Pekkan K. Comparative radiopacity of bone graft materials. J Craniomaxillofac Surg. 2012; 40(1): e1-4. doi: 10.1016/j.jcms.2011.01.018
  14. Sun Y, Ventura M, Oosterwijk E, Jansen JA, Walboomers XF, Heerschap A. Zero echo time magnetic resonance imaging of contrast-agent-enhanced calcium phosphate bone defect fillers. Tissue Eng Part C Methods. 2013; 19(4): 281-7. doi: 10.1089/ten.TEC.2011.0745
  15. Ajeesh M, Francis BF, Annie J, Harikrishna Varma PR. Nano iron oxide-hydroxyapatite composite ceramics with enhanced radiopacity. J Mater Sci Mater Med. 2010; 21(5): 1427-34. doi: 10.1007/s10856-010-4005-9
  16. Hernandez L, Fernandez M, Collia F, Gurruchaga M, Goni I. Preparation of acrylic bone cements for vertebroplasty with bismuth salicylate as radiopaque agent. Biomaterials. 2006; 27(1): 100-7. doi: 10.1016/j.biomaterials.2005.05.074
  17. van Hooy-Corstjens CS, Govaert LE, Spoelstra AB, Bulstra SK, Wetzels GM, Koole LH. Mechanical behaviour of a new acrylic radiopaque iodine-containing bone cement. Biomaterials. 2004; 25(13): 2657-67. doi: 10.1016/j.biomaterials.2003.09.038
  18. Ginebra MP, Espanol M, Montufar EB, Perez RA, Mestres G. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater. 2010; 6(8): 2863-73. doi: 10.1016/j.actbio.2010.01.036
  19. Kumar CY, Nalini KB, Menon J, Patro DK, Banerji HB. Calcium sulfate as bone graft substitute in the treatment of osseous bone defects, a prospective study. J Clin Diagn Res. 2013; 7(12): 2926-8. doi: 10.7860/JCDR/2013/6404.3791
  20. Kim JH, Oh JH, Han I, Kim HS, Chung SW. Grafting using injectable calcium sulfate in bone tumor surgery: comparison with demineralized bone matrix-based grafting. Clin Orthop Surg. 2011; 3(3): 191-201. doi: 10.4055/cios.2011.3.3.191
  21. Johnson KD, August A, Sciadini MF, Smith C. Evaluation of ground cortical autograft as a bone graft material in a new canine bilateral segmental long bone defect model. J Orthop Trauma. 1996; 10(1): 28-36. doi: 10.1097/00005131-199601000-00005
  22. Lu J, Yu H, Chen C. Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Adv. 2018; 8(4): 2015-33. doi: 10.1039/c7ra11278e
  23. Ros-Tárraga P, Mazón P, Rodríguez MA, Meseguer-Olmo L, De Aza PN. Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation. Materials (Basel). 2016; 9(9): 785. doi: 10.3390/ma9090785
  24. Sun Y, Xu C, Wang M, Wei L, Pieterse H, Wu Y, Liu Y. Radiographic and histological evaluation of bone formation induced by rhBMP-2-incorporated biomimetic calcium phosphate material in clinical alveolar sockets preservation. Int J Implant Dent. 2023; 9(1): 37. doi: 10.1186/s40729-023-00491-1

Abstract   |   Reference

MOJ footer

About Us

The Malaysian Orthopaedic Journal is a peer-reviewed journal that is published three times a year in both print and electronic online version. The purpose of this journal is to publish original research studies, evaluation of current practices and case reports in various subspecialties of orthopaedics and traumatology, as well as associated fields like basic science, biomedical engineering, rehabilitation medicine and nursing.

Keep in Touch

creative-commons License